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Abstract

This paper uses Israeli data of inflation-indexed and nominal government bonds to
estimate a discrete-time essentially affine term structure model. To estimate the model,
I use a uniquely long-spanned sample of monthly real yields for the period of 01/1985–
03/2018. The nominal yields data spans the period of 05/2001–03/2018. I document
an unconditional upward sloping real term structure that the model ascribes to a rising
real term premium while the average expected real short rates are relatively flat. A
decomposition of the break-even inflation shows that the unconditional term structure
of the inflation premium is increasing with maturity and most of the variance in the
short end is due to expected inflation. However, in the long end, most of it is due to
the inflation term premium.
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1 Introduction

This paper follows a number of recent studies in focusing on ex-ante real yields derived

from inflation-indexed bonds. Given that standard asset pricing theory ascribes changes

in nominal yields to either changes in real yields, expected inflation, or the inflation risk

premium, inflation-indexed bonds have the potential to enrich our understanding of the

determinants of bond yields. Furthermore, a wide array of market participants, ranging

from policy makers such as central banks to professional investors, monitor both nominal

and inflation-indexed bonds. One particular use of looking at both types of bonds is the

difference between the nominal and inflation-indexed bonds with the same maturity, also

known as the break-even inflation (BEI), which is used as a proxy for the expected inflation.

However, as market participants, particularly central bank, know, the BEI also contains an

inflation premium so that the “true” inflation expectations can deviate from the BEI.

This paper estimates a discrete-time essentially affine term structure model (ATSM) to

explain the sources of variation in Israeli government yields, using monthly inflation-indexed

government bond data for the period of 01/1985–03/2018 and nominal government bond

data for the period of 05/2001–03/2008. ATSMs have the advantage to being both tractable

and flexible enough to match the observed time-varying behavior of risk premia in the U.S.

as shown by Dai and Singleton (2002).

The main contribution of the paper is the use of a long history of real rates data (since

1985) to properly estimate the model, as yields are highly persistent and thus make infer-

ence using ATSMs less reliable (e.g., Kim and Orphanides, 2012). Inflation-indexed bonds

have been trading in Israel since the early ’50s1, making this bond market one of the older

such markets (a feature it shares with the United Kingdom). The Israeli government bond

market has been examined before. Kandel, Ofer, and Sarig (1996) studied inflation-indexed

bonds to infer the magnitude of the inflation risk premium and Kahn, Kandel, and Sarig

1More information can be found in the book The Stock Exchange and the Investment in Securities by
Levy, Smith, and Sarnat.
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(2002) have examined how monetary policy shocks affect real rates. More recently Stein

(2011) estimated an ATSM using government inflation-indexed bonds exclusivity and em-

ploying an identification scheme to the latent factors so that they behave in accordance with

macroeconomic variables.

Three characteristics make the Israeli bond market particularly well-suited to the current

research:

1. Issuance amount. The amount of inflation-indexed bonds the Israeli treasury issues

yearly remains high. Inflation indexed bonds still make up a substantial part of new

issues, at around 30%.2

2. Short real yields - My data consists of real yields with maturities starting at one

year. To the best of my knowledge, this is the first paper that estimates the real and

nominal yield curves jointly using real rates with maturities of less than 4 years.

3. Short indexation lag. The indexation lag is at most a month and a half.3

The paper also contributes to empirical work on real yields, which has been carried out

on relatively short sample periods and mostly in the U.S. and U.K. (Ermolov, 2017). For

example, Piazzesi and Schneider (2006) document a downward sloping real yield curve for

the U.K. for the period of 01/1983–03/2006, and an upward sloping real yield curve in the

U.S. for the period of 01/1997–01/2006.

I find that four (latent) factors provide a good fit for both the real and nominal yield

curves. In particular, I show that the real yield embedded in Israeli government inflation-

indexed bonds reflect real yields that are less affected by illiquidity, which distinguishes the

current paper from both Abrahams, Adrian, Crump, Moench, and Yu (2016) and D’Amico,

2The literature describes the U.K. market as issuing a high number of inflation-linked bonds (Bekaert
and Wang, 2010), at around 20% in recent years. http://www.dmo.gov.uk/index.aspx?page=Gilts/

Portfolio_Statistics .
3The reference CPI is the last known CPI before the bond was issued. If an inflation-indexed bond is

issued on the 14th of a month, say in May, the last known reference CPI is the 15th of April (i.e., March’s
inflation), which constitutes an inflation lag of one and a half months.
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Kim, and Wei (2018) who adjust their model by adding a liquidity factor specific to Treasury

Inflation-Protected Securities (TIPS). My main findings are as follows:

� The unconditional term structure of the inflation premium is increasing in maturity.

� Most of the variance in the break-even inflation in the short end is due to changes in

the expected inflation. However, in the long end, most of it is due to the inflation term

premium.

� Most of the variance in real yields is due to expected real short rates.

� The average expected real short rates are flat throughout the sample period.

� An increasing real term premium gives the unconditional real yield curve a positive

slope.

The rest of the paper describes the analysis that led to these conclusions. Section 2

describes the data used for estimating the model in detail, and presents summary statistics.

Section 3 motivates the choice of four factors. Section 4 describes the essentially affine term

structure model I used. Section 5 presents the details of the estimation procedure. Section 6

presents the results. Section 7 reiterates the findings and describes limitations and avenues

for further research.

2 Data

In contrast to U.S. and U.K. government bonds, Israeli government bonds are traded in

the stock market and not over-the-counter. At present there is no repo market and market

makers for government bonds were introduced in 20064 (at first only for nominal bonds

and later for inflation-indexed bonds). A striking feature of Israeli government bonds is

that inflation-indexed bonds have been trading since the early 1950s, long before long-term

4See Gamrasni (2011) for a discussion of the effect of the introduction of market makers.
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nominal bonds were introduced in the market in 1995. This is due to a history of double- and

even triple-digit yearly inflation. The earliest period for which I have complete and reliable

real yields data is from 01/1985 and it is of the form of end-of-month yield to maturities

up until 01/1995. From 01/1995–03/2018 real yields are smoothed and calculated using a

cubic spline method. Nominal bonds data spans the period of 05/2001–03/2018 and nominal

yields are smoothed and calculated using the cubic spline method as well. Throughout the

sample the yields are adjusted for carry (expectation of the nearest month realized inflation

that has yet to be announced) and from 2008 onwards they are adjusted for seasonality (see

Stein, 2012, for the methodology). Even though seasonal adjustment has only been carried

out since 2008, this does not imply that before 2008 real yields were biased. Seasonality was

likely less of an issue then because many inflation-indexed bonds had been trading in the

market and seasonal effects of in neighboring maturities would have canceled each other out.

In the past decade, there has been a consolidation of inflation-indexed bonds series, as can be

seen in Figure 7. Both real and nominal yields have maturities of one, three, five, seven, and

ten years. For the shorter end of the nominal yield curve (up to one year) I use zero coupon

nominal yields, known as MAKAM yields, for the period of 05/2001–03/20185. I also use

the mean of the survey forecasts of Bank of Israel (BOI) interest rate of one month and one

year ahead for the period of 05/2013–03/20186. Israeli Central Bureau of Statistics (CBS)

provides seasonally adjusted monthly inflation data7 for the period of 06/2001–03/2018.

Table 1 presents summary statistics of the nominal and real yield curve. The real term

structure is upward sloping with an average slope (ten minus one) of 93 basis points, and the

nominal term structure is upward sloping as well (for a shorter period of 05/2001–03/2018)

with an average slope of 219 basis points.

The term structure of the standard deviation of the changes of real yields is in general

downward sloping. The nominal curve shows a similar trend. The term structure has a

5MAKAM data can be found at http://www.boi.org.il/en/DataAndStatistics/Pages/

SeriesSearchBySubject.aspx?Level=3&sId=41.
6Twelve forecasters provide these forecasts to the BOI several times during the calendar month.
7See http://www.cbs.gov.il/ts/databank/databank_main_func_e.
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hump in the three years to maturity and declines afterwards.8. Apart from the one year real

rate, the term structure of standard deviation of the changes in the nominal rate is higher

than the real rate. Roll (2004) documents this phenomenon also in the U.S. data. Roll’s

explanation is that expected inflation shocks cause nominal yields to increase their standard

deviation. Table 1 also reveals that both real and nominal bonds have a high one-month

autocorrelation, with a slower decay in long term real yields compared to their nominal

counterparts. The time series in Figures 1, 2, and 3 reveal that all yields in Israel have

decreased in the past 16 years. This has been a worldwide phenomenon.9 These time series

also reveal that the BEI has decreased considerably from its high levels in the early 2000s,

a period of high inflation, to its low levels of recent years.

3 Preliminary Analysis

3.1 Factor analysis

To choose the appropriate number of factors that help explain the term structure, I perform

a PCA analysis. It is a common finding that three factors help explain the majority of

variability of the U.S. nominal term structure. Performing a PCA analysis on the Israeli

data for the period of 01/85–03/2018 for real yields and for the period of 05/2001–03/2018

for nominal yields confirms that this is also the case for Israel: three factors explain 98.2%

and 98.6% of the variance of monthly changes in the real and nominal yields, respectively.

However, as I am interested in modeling both the real and nominal curves, it is essential to

do a PCA analysis combining both real and nominal yields. Performing PCA on monthly

changes of both the real and nominal yield curves (as my real yields dataset starts a lot

earlier I made sure that they both start at 05/2001 for the PCA analysis) yields that three

factors can explain only 92% of the combined variance, while four and five factors can explain

8This latter empirical finding has been documented in Piazzesi (2001) for U.S. data, albeit for a different
period. See Singleton (2009, chapter13) for a full discussion of this point.

9See for instance King and Low (2014).
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96.3% and 98.18% of the variance, respectively. Obviously, three factors are not going to

be enough to explain the combined term structure. On the other hand, five factors can

explain as much variability as three factors can for the real and nominal parts separately.

Nevertheless, I chose to model the combined term structure with four factors so to favor the

parsimony of the model and avoid overfitting.10

3.2 Liquidity in the Israeli Government Bond Market

Several studies of the U.S. market, such as Sack and Elsasser (2002), Shen (2006), and

D’Amico et al. (2018), conclude that prior to 2004, TIPS yields were too high. This sug-

gests that there might have been a significant liquidity premium that has since declined. A

recent paper by Fleckenstein, Longstaff, and Lustig (2014) shows that there are arbitrage

opportunities in the TIPS market that were economically significant particularly during

the financial crisis of 2008. The same conclusion is reached by Haubrich, Pennacchi, and

Ritchken (2012), albeit in a different way. They estimate an affine term structure model,

but use U.S. zero-coupon inflation swaps to infer real yields. They report large deviations

between their estimated real yields and those of TIPS. These issues have prompted both

D’Amico et al. (2018) and Abrahams et al. (2016) to add an extra liquidity factor which

represents the lack of liquidity of TIPS relative to nominal Treasury securities. To determine

whether similar mechanisms operate in the Israeli market, this section explores the role of

illiquidity in determining real yields in the inflation-indexed bond market.

I follow D’Amico et al. (2018) and regress weekly 3-month, 2-year, and 10-year nominal

yields on the 10-year BEI for the period of 05/2001–03/2018. If the 10-year real yield

embedded in the 10-year inflation-indexed bond accurately captures the real yield, the BEI

should contain the 10-year expected inflation and the inflation risk premium: two variables

that are part of the 10-year nominal yield. This implies that regressing the 10-year BEI

10In ATSMS this is a real concern as shown in Duffee (2011). He shows that using more than three factors
to estimate the nominal yield curve in the U.S. results in extremely high and unrealistic Sharpe ratios of
expected excess returns.
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on weekly 3-month, 2-year,10-year nominal yields should result in a high R2. The results

(untabulated in the paper) show an R2 of 87% for the whole period, much higher than the

6% reported in D’Amico et al. (2018). These results suggest that the variation in the real

yields implied from inflation-indexed bondd is due to variation in the “true” real yields and

support the notion that there is no need to add a specific factor that captures the lack

of liquidity between inflation-indexed bonds and nominal bonds. This should come as no

surprise as the amount the Israeli treasury issues yearly is still high. Looking at Figure 4,

we see that inflation indexed bonds still make up a substantial part of new issues, at around

30%. For example, the U.K. is frequently cited in the literature as having a high percentage

of its issues in indexed bonds, which has been around 20% in recent years 11. Furthermore,

Figure 5 and 6 show a time series of the monthly average of the daily trading volume of

nominal and inflation-indexed bonds from 2001 onwards and the monthly average of daily

quoted spreads12 divided by the midpoint price (in percentages) of inflation-indexed and

nominal government bonds from 2005 onwards13. The figures show that even though the

nominal market has a higher trading volume and a lower quoted spread, the difference is not

so dramatic between them. For example, the ratio (as of June 2018) between the trading

volume in the primary dealers market14 in the U.S. between the nominal and inflation-

indexed markets is around 13, which indicates a much larger differences between the two

markets. Daily quotes data from Bloomberg for July 2018, reveal that the ratio between the

quoted half-spread of the 5-year on-the-run treasury and the 5-year on-the-run 5 TIPS was

7. For the 10-year maturity the ratio was 3.5. In contrast, in Israel it has been 2 on average

for the whole period and for all maturities.

11Data taken from http://www.dmo.gov.uk/index.aspx?page=Gilts/Portfolio Statistics
12The daily quoted spreads are an average of all the quoted spreads in the limit order book.
13 The earliest period I have data for.
14Data from https://www.newyorkfed.org/markets/gsds/search.html.
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4 The Affine Term Structure Model

Both affine models and macroeconomic models derive their equations from equilibrium (and

no-arbitrage) assumptions. Whereas in macroeconomic models, the pricing kernel has the

form

Mt+1

Mt

=
βU

′
(Ct+1)

U ′(Ct)
, (1)

where β is the subjective discount factor, and U
′
(C) is the marginal utility of consumption,

in affine models, as we shall see, the pricing kernel takes a different form. Many papers

that decompose the term structure use ATSMs such as the one I use here. Duffie and Kan

(1996) popularized ATSMs, and Duffee (2002) extended them to include time-varying prices

of risk (and named them “essentially affine models”). Dai and Singleton (2002) show that

the estimates of a three factor, essentially affine model, can match the dynamics of the time-

varying risk premiums found by Fama and Bliss (1987), and Campbell and Shiller (1991)

using U.S. nominal yields. My models is set in discrete time and builds on the model of

D’Amico et al. (2018).15.

4.1 Real Pricing Kernel

I start with the specification of the real short rate. I assume the real short rate is an affine

function of four latent factors

rRt = δR0 + δR
′

1 Xt,

where δR0 is a scalar, δR1 is a (4× 1) vector, and Xt are the latent factors that drive the real

yields and have the following form

Xt+1 = µ+ ΦXt + Σet+1, (2)

15For full details and derivation see Appendix B.
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where µ is a (4 × 1) vector, φ is a (4 × 4) matrix, {et} is a (4 × 1) i.i.d N(0, I) process,

I is a (4 × 4) diagonal matrix and Σ is a (4 × 4) matrix. The model is complete with the

specification of the real pricing kernel

MR
t+1

MR
t

= exp
(
−0.5λR

′

t λ
R
t − rRt − λR

′

t et+1

)
, (3)

where λRt is a (4×1) vector of the real price of risk. In the essentially affine model, the price

of risk can vary with the level of the state vector

λRt = λR0 + λR1 Xt, (4)

where λR0 is a (4 × 1) vector and λR1 is a (4 × 4) matrix. That is, the real price of risk is

also an affine function of the latent factors and can change in magnitude and sign. After the

real pricing kernel is specified, we can price real bonds at time t with n periods to maturity.

Manipulation of the pricing equation (see Appendix B) shows that

yRt,t+n = ARn +BR′

n Xt, (5)

where yRt,t+n is the continuously compounded yield at time t with maturity n, ARn is a scalar,

and BR
n is a (4× 1) vector.

4.2 Nominal Pricing Kernel

As I a, jointly estimating both real and nominal bonds, I specify the nominal pricing kernel.

I assume that the nominal short rate is an affine function of four latent factors

rNt = δN0 + δN
′

1 Xt, (6)
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where δN0 is a scalar, δN1 is a (4 × 1) vector, and Xt, the same latent factors that drive the

real yields, also drive the nominal yields. The nominal pricing kernel has the form

MN
t+1

MN
t

= exp
(
−0.5λN

′

t λ
N
t − rNt − λN

′

t et+1

)
, (7)

where λNt , the nominal price of risk, is a (4 × 1) vector. As in the case of the real price of

risk, the nominal price of risk also varies with the state of the economy, i.e.,

λNt = λN0 + λN1 Xt, (8)

where λN1 is a (4× 4) matrix.

The specification of the price process, πt, links the nominal and real pricing kernels

Πt+1 = Πt exp
(
δπ0 + δΠ′

1 Xt + σ
′

qet+1 + σvvt+1 − 0.5(σ
′

qσq + σ2
v)
)
, (9)

where δπ0 is a scalar, δπ1 is a (4 × 1) vector, σq is a (4 × 1) vector, σv is a scalar, and vt is a

white noise process. I assume that cov(vt, et) = 0. Thus, I follow D’Amico et al. (2018) and

Risa (2001) and allow for an exogenous shock not spanned by the yield curve to affect the

price process. Nominal yields follow the same functional form as real yields, i.e.,

yNt,t+n = ANn +BN ′

n Xt, (10)

where yNt,t+n is the continuously compounded yield at time t with maturity n, ANn is a scalar,

and BN
n is a (4 × 1) vector. To complete the model, the relationship between the real and

nominal pricing equations can be derived via the following no-arbitrage argument: the price

of an asset that promises 1 unit of consumption in the next period has to be equal under

both the real and nominal pricing kernel. That is,

E

(
MR

t+1

MR
t

· 1
)

= E

(
MN

t+1

MN
t

· Πt+1

Πt

)
. (11)
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Assuming that the market is complete implies that

MR
t+1

MR
t

=
MN

t+1

MN
t

· Πt+1

Πt

. (12)

Substituting Equations (3), (7) and (9) into (12) and matching coefficients yields the follow-

ing restrictions on the parameters:

δN0 = δR0 + δπ0 + 0.5(σ
′

qσq + σ2
v)− λN

′

0 σq,

δN1 = δR1 + δπ1 − λN
′

1 σq,

λN0 = λR0 + σq,

λR1 = λN1 . (13)

5 Estimation

Following Kim and Orphanides (2012), D’Amico et al. (2018), and Joyce, Lildholdt, and

Sorensen (2010), I assume that all yields are estimated with error, and construct the maxi-

mum likelihood function using the Kalman filter.16

5.1 The State and Measurement Equation

Implementing the Kalman filter requires definition of a state and a measurement equation.

ATSMs lend themselves easily to this specification. Equation (2), the law of motion of the

latent factors, explicitly defines the state equation. For the measurement equations17 I will

assume that real and nominal yields are observed with a measurement error such that

yNt,t+n = ANn +BN ′

n Xt + ηR,

yRt,t+n = ARn +BR′

n Xt + ηN , (14)

16See Appendix A for more details on deriving the maximum likelihood function.
17Since the data is monthly end-of-month yields, t and n are in monthly units.
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where ηR
ηN

 N∼

σR 0

0 σN

 , (15)

where σR and σN are scalars. Therefore, I assume that nominal and real bonds differ with

respect to their measurement error.

5.2 The Price Process

For the price process level, Πt, I use the seasonally adjusted series. I define the monthly

change at time t as the log of the level at time t divided by its level at t− 1, i.e.,

πt+1 ≡ log

(
Πt+1

Πt

)
= δπ0 + δπ

′

1 Xt + σ
′

qet+1 + σvvt+1 − 0.5(σ
′

qσq + σ2
v). (16)

Unlike for yields, I assume that the price process is estimated without error.

5.3 Matching Surveys

Kim and Orphanides (2012) make the point that ATSMs law of motion parameters are

estimated imprecisely and biased downwards, because estimating persistent factors requires

a large sample. This results in an estimated model with faster mean reversion parameters

that attribute almost all variation of longer term forward rates to the term premium. Kim

and Orphanides then show that supplementing the estimation of an ATSM with survey

forecasts of future T-bill yields reduces the bias in the estimated law of motion parameters

considerably. I follow them by using the mean of survey forecast of one month and one year

ahead interest rate BOI target rate.
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Expected n-month ahead short rates are easily derived and take the form18

Et(r
N
t+n) = δN0 + δN

′

1 φnXt. (17)

I assume that one-month and one-year ahead mean survey forecasts have no bias in their

expectations, i.e.,

I2
t = Et(r

N
t+1) + ηi2 ,

I13
t = Et(r

N
t+12) + ηi13 , (18)

and

ηI
N∼

σi2 0

0 σi13

 . (19)

A disadvantage of the Israeli data is that there are no long-term surveys. This may

bias the estimated law of motion parameters. However, it is not clear how important the

long term forecasts are in terms of reducing the bias. For instance, Kim and Orphanides

(2012) use the expected 3-month T-bill yield between the next 6 and 11 years, but since it

is available only twice a year, they downplay its role in their estimation by imposing a large

standard error.

18To show this, note that
Et(r

N
t+n) = Et(· · ·Et+n−1(rNt+n)).

This can be solved backwards using the tower property.
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5.4 The Augmented State and Measurement Equation

To fix ideas, I conclude this section with a more explicit representation and the identification

restriction I impose. The augmented state equation takes the form



x1
t+1

x2
t+1

x3
t+1

x4
t+1

πt+1


=



0

0

0

0

δπ0 − 1
2
(σ
′
qσq + σv)





φ1,1 0 0 0 0

0 φ2,2 0 0 0

0 0 φ3,3 0 0

0 0 0 φ4,4 0

δπ1,1 δπ1,2 δπ1,3 0 0





x1
t

x2
t

x3
t

x4
t

qt


+



0.01 0 0 0 0

σ2,1 0.01 0 0 0

σ3,1 σ3,2 0.01 0 0

σ4,1 σ4,2 σ4,3 0.01 0

σ1
q σ2

q σ3
q σ4

q σv





ε1t+1

ε2t+1

ε3t+1

ε4t+1

vt+1


.

(20)

Notice that as in the ATSM not all the parameters are identified,19 I set the off-diagonal

entries of matrix φ to zero, the vector µ to zero and the diagonal of Σv to 0.01, while only

estimating the cross correlation parameters. I also set the off-diagonal price of risk of λN1 to

zero.

19For a discussion on this point see Dai and Singleton (2000).
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The augmented measurement equation takes the form



yNt,t+6

yNt,t+9

...

yNt,t+12

...

yNt,t+120

yRt,t+12

...

yRt,t+120

πt

I2
t

I13
t



=



AN6

AN9
...

AN12

...

AN120

AR12

...

AR120

δπ0 − 1
2
(σ
′
qσq + σv)

δN0

δN0



+



BN
1,6 . . . BN

4,6 0

BN
1,9 . . . BN

4,9 0

...
. . .

...
...

BN
1,12 . . . BN

4,12 0

...
. . .

...
...

BR
1,120 · · · BR

4,120 0

BR
1,12 . . . BR

4,12 0

...
. . .

...
...

BR
1,120 · · · BR

4,120 0

δπ1,1 · · · δπ1,4 0

δN1,1φ1,1 · · · δN1,4φ4,4 0

δN1,1φ
12
1,1 · · · δN1,4φ

12
4,4 0



Xt

πt

+



ηN

ηR

0

ηI


. (21)

Using the Kalman filter, I estimate a total of 36 parameters.

Θ ≡ (φ, σv, σq, λ
N
0 , λ

N
1 , δ

π
0 , δ

π
1 , ση, σR, σN , σI) (22)

6 Results

6.1 General Fit

The mean absolute deviation (MAD) and the root mean square error (RMSE) are reported

in Table 2. Except for the one-year real yield, the average RMSE across maturities is 23

for the 01/1985–03/2018 and 7.5 basis points for real and nominal yields for the period

of 05/2001–03/2018. For the period of 05/2001–03/2018, the RMSE of real yields across
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maturities is lower (15 basis points). The better fit in the later period might be due to the

fact that the yield to maturities I used in the previous period induced more measurement

error. In Figures 8 and 9 I compare the time series of the model’s fitted real and nominal

yields with their actual yields. The model’s good fit of the nominal and real yield curves is

confirmed by the figures. One might object that the lack of a good fit for the 1-year real

rate stems from its poor liquidity. To make sure that this is not the case, I follow Pflueger

and Viceira (2011) and run the following regression,

BEIt = α + β1Et(πt) + β2BaSt + εt, (23)

for the period of 01/2005–03/201820, where BEIt is the end-of-month 1-year BEI, Et(πt) is

the end-of-month average of the survey of professional forecasters for the 1-year inflation, BaS

is the end-of-month daily half-quoted spreads divided by the midpoint price (in percentages)

that serve as a proxy for the 1-year real yield liquidity. The results of the regression are

presented in Table 3. They reveal that the level of liquidity, as proxied by the bid-ask spreads

do not result in a lower BEI so the lack of fit (at least from 2005 onwards) might not be

the result of poor 1-year liquidity. Another possibility is that the 1-year real yield is still

partially affected by seasonality as its effect on the shortest maturities is highest. This could

possibly result in a fitted 1-year real yield that is closer to the “true” seasonally-adjusted

1-year rate. To test this, I run two regression. The first one is the seasonally adjusted real

rate (the series used to estimate the model) on the seasonal adjustment factors for the period

of 01/2008–03/2018 (01/2008 is when real yields were seasonality adjusted). The results in

Table 4 show that the seasonal adjustment is statistically significant indicating the presence

of seasonality.21 I then run a regression of the fitted 1-year real yield from the model on

the seasonal adjustment. The results reveal an R2 that is cut in half and with a statistical

20The sample begins in 2005 because this is the earliest I have bid-ask spreads data.
21In an unreported regression, the subsample from 03/2012 onwards is no longer statistically significant,

indicating that seasonality might not be an issue from this period onwards.
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significance of only 10%, supporting the notion that part of the fitting error may be due to

seasonality noise.

6.2 Decomposing the Yield Curve

This subsection presents the main results of the paper, which is the decomposition of the

nominal yield into its expectation and risk premium parts:

yNt = Et(y
R
t )︸ ︷︷ ︸

expected real rate

+ RealRPN
t︸ ︷︷ ︸

real risk premium

+ Et(π
N
t )︸ ︷︷ ︸

inflation expectations

+ RPN
t︸ ︷︷ ︸

inflation risk premium

. (24)

6.3 The Real Rate

Table 1 revealed that the real term structure was upward sloping during the 01/1985–03/2018

period. Figure 10 shows the time-series decomposition of the 1-year, 3-year, 5-year, 7-year

and 10-year real yields into fitted real yields, average expected short real yields and the

real term premium. It shows that variation in real yields is mostly driven by variation

in the expected short rate and not in the real term premium. Table 5 shows that, on

average, the expected real short rate was flat throughout the period. It is interesting to

compare these results to some theoretical model predictions. Nakamura, Steinsson, Barro,

and Ursúa (2013) develop a model of consumption disasters that allows disasters to unfold

over multiple years and to be systematically followed by recoveries. Their model implies that

the real term premium should be negative and that real term structure should be downward

sloping, as real bonds are excellent hedges against disaster risk. Piazzesi and Schneider

(2006) solve for a model of a representative agent asset-pricing model with recursive utility

preferences and exogenous consumption growth and inflation. In their model, inflation shocks

are “bad news” for future consumption growth. Therefore, long indexed bonds pay off when

future real interest rates (and future consumption growth) are low so that they provide a

hedge. Therefore, the real term structure should be downward sloping. Both of the channels
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described by the two models are not corroborated by the Israeli data. Our results are

however in line with the model of Wachter (2006) who develops a consumption-based model

of the term structure of interest rates. She calibrates her model so that the real risk-free

rate is negatively correlated with surplus consumption. The negative correlation between

surplus consumption and the risk-free rate leads to positive risk premia on real bonds, and

an upward-sloping yield curve.

6.4 The Break-Even Term Structure

In this subsection, I analyze the results of the BEI decomposition. As nominal yields data

is only from 05/2001, my analysis of the BEI starts accordingly from that point. Figure 12

shows the time series decomposition of the 1-year, 3-year, 5-year, 7-year and 10-year of the

BEI into fitted break-even yields, expected inflation and the inflation term premium. The

figure reveals that the variation in the short rate is largely driven by variation in expected

inflation. As we move into longer maturities, this changes and the variation is largely driven

by variation in the inflation premium. The results also reveal that in the past four years, the

inflation premium has been negative in all years to maturity, which coincides with a period

of decline in yearly CPI to negative territory both in Israel and worldwide (see Figure 11).

The negative inflation risk premia are consistent with positive inflation shocks being

correlated with states of low marginal utility of wealth and therefore acting as a hedge

against inflation. This is consistent with the findings of Kitsul and Wright (2013) for the

U.S. that the empirical pricing kernel is U-shaped (which they estimate from options based

on consumer price index inflation) with inflation. Therefore, in times of low inflation, a

high inflation shock, which is associated with lower real yields for nominal bond holders, is

associated with low marginal utility of wealth.22 Table 6 shows unconditional averages for

the whole sample. It reveals that the inflation term premium for the whole sample has been

positive, ranging from a low of 0.22 basis points at the short end (1 year) to 0.63 at the

22The high inflation term premia in the early 2000s is also consistent with this finding.
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10-year maturity.

It is interesting to compare these results with other results in the literature. Figure

13 shows the fitted 5-year/5-year BEI forward rates along with the 5-year/5-year expected

inflation. It shows that almost all the variation in the forward BEI measure is driven by

the inflation term premium. It further shows that the expected inflation is fairly constant

at around 2%, which is the BOI target rate. These results are similar to those of Abrahams

et al. (2016) who report the same finding for the U.S.: most of the variation is due to the

inflation term premia, and the expected inflation remains stable between 2.1% and 2.5%.

As mentioned earlier, the results for Israel show that concurrently with the persistent low

inflation, the inflation term premia has become negative. Thus, the results for Israel are

consistent with the findings of Abrahams et al. (2016) (whose sample ends in November

2014) and D’Amico et al. (2018) (whose sample ends in March 2013) for the U.S. They show

a trending inflation term premium that was concurrent with the persistent world inflation.

7 Conclusions

In this paper I estimate a discrete-time four-factor essentially affine term structure model

using Israeli data for both inflation-indexed and nominal government bonds. The real rates

data is uniquely long and spans the period of 01/1985–03/2018. The nominal yields data

spans the period of 05/2001–03/2018. I find that an increasing inflation term premium ac-

counts for the unconditional positive slope of the nominal curve, while inflation expectations

are relatively flat. I also find that the variance in the one-year real yield accounts for most

of the variance in the one-year nominal yield, while in the longer maturities most of the

variance is due to expected inflation and the inflation term premium.

I also show that contrary to the results of Abrahams et al. (2016), D’Amico et al. (2018)

for the U.S., liquidity has a less prominent role in determining real yields in Israel.

A limitation of the model is that it does not identify the four factors. It would be
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interesting to identify the factors, as macro-finance models do. I leave this to future work.
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A Estimating ATSMs with the Kalman Filter

In this appendix, I summarize the general strategy of estimating affine term structure models

with the Kalman filter. We start with our state and measurement equations:

Xt+1 = µ+ ΦXt + Σεt+1,

ynt = An +BnXt + ut, (25)

where {ut} is i.i.d N(0,ΣΣ
′
). This framework assumes that what drives the yields are k

latent factors. In this particular setup, we shall also need some results from the Kalman

filter algorithm. The Kalman filter algorithm can produce latent factors given both observed

data and the parameters of the model. Although Equation (25) is written in state-space form,

we lack the parameters of the dynamics. Thus, the role of the Kalman filter in the estimation

process is subtle.

A.1 The Kalman Filter Algorithm

In order to understand the role of the algorithm in the estimation of the essentially affine

term structure model, we first present the algorithm. Suppose that we are given the following

set of equations:

yt = Hxt + vt, (26)

xt = Gxt−1 + εt, (27)

where vt
εt

 ∼ N

0,

R 0

0 Q


 . (28)
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Assume that we can observe only the multivariate series {yt}, when what we really want to

know is the dynamics of the latent series {xt}. Suppose also that H,G,R, and Q are given.

The Kalman filter algorithm yields:

E(xt|Ωt), V ar(xt|Ωt), f(yt|Ωt−1).

We introduce some useful notation:

xt−1|t−1 ≡ E(xt−1|Ωt−1),

Pt−1|t−1 ≡ V (xt−1|Ωt−1).

The Kalman filter combines xt−1|t−1 and Pt−1|t−1 with yt to yield

xt|t ≡ E(xt|Ωt),

Pt|t ≡ V (xt|Ωt).

Note that we know that {xt} and {yt} are jointly normal processes. Moreover,

xt |Ωt−1

yt |Ωt−1

 ∼ N


xt|t−1

yt|t−1

 ,
Pt|t−1 C

′

t|t−1

Ct|t−1 ht|t−1


 (29)

where we have that

xt|t−1 = Gxt−1|t−1,

yt|t−1 = Hxt|t−1,

Pt|t−1 = GPt−1|t−1G
′
+Q,

Ct|t−1 = HPt−1|t−1,

ht|t−1 = HPt|t−1H
′
+R.
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The main takeaway is to note that the marginal distribution of yt is

f(·|yt|t−1) ∼ N(yt|t−1, ht|t−1). (30)

This means that in order to build the likelihood function of the {yt} process, we have to go

along and work out the Kalman filter, as it generates the covariance matrix of the process.

Next, we run the Kalman filter algorithm.

A.2 The Likelihood Function

We want to estimate the likelihood function

f(y1, . . . , yT |Θ), (31)

where Θ = {Σ,Σu, An, Bn, µ,Φ, λ}. Since the process {yt} has the Markov property, we have

f(y1, . . . , yT |Θ) = f(y1|Θ)
T∏
t=2

f(yt|yt−1,Θ), (32)

where f(yt|yt−1,Θ) is a multivariate normal variable (see Equation (30)). The likelihood

function is thus of the form

L (Θ| {y1, . . . , yT}) = (2π)
−k(T )

2

T∏
t=1

det(ht|t−1)−
1
2 exp

(
−1

2
(yt − yt|t−1)

′
h−1
t|t−1(yt − yt|t−1)

)
.

(33)

For better numerical stability, we maximize the log-likelihood function:

LogL (Θ| {y1, . . . , yT}) ∝ −
T∑
t=2

log
(
det(ht|t−1)

)
−

T∑
t=2

(yt − yt|t−1)
′
h−1
t|t−1(yt − yt|t−1). (34)
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B Deriving the Pricing Equations

Note that

P 1
t = E(Mt+1) = exp (−rt) = exp (−δ0 − δ1Xt) .

From this, we guess the general form of the price of a bond to be

log(P n
t ) = pnt =

(
−An −BnXt

)
. (35)

We know from no-arbtirage pricing that

pnt = E(pn−1
t+1 +mt+1) +

1

2
var(pt+1 +mt+1). (36)

Matching the coefficients of Equation (36) with Equation (35), we have that the coeffi-

cients An and Bn follow the difference equations (also known as loading factors):

An+1 = An +Bn

′

(µ− Σvλ0) + 0.5Bn

′

ΣvΣ
′

vBn − δ0,

Bn+1

′

= Bn

′

(Φ− Σvλ1)− δ′1. (37)

Since P n
t = exp (−nynt ), we have that

ynt = An +BnXt, (38)

where An = −An/n and Bn = −Bn/n.
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Table 1: Summary Statistics. This table shows summary statistics of nominal and real
yields with maturities of one, three, five, seven, and ten. The frequency of the data is
monthly (end-of-month) and it spans the period of 01/1985–03/2018 for real yields and the
period of 05/2001–2018 for nominal yields. From 05/2001 onwards, the yields are of constant
maturity and smoothed. Before that, yield to maturity of inflation-indexed bonds are used.
Real yields are adjusted for both the effect of carry and seasonality. Data is in percent and
annualized. Yields are continuously compounded.

(a) Real Yields 01/1985–03/2018

Maturity 1 3 5 7 10

Mean 2.50 2.80 2.98 3.09 3.43
Std. Dev. (changes) 1.24 0.55 0.48 0.41 0.36
1 Month Autocorrel. 0.882 0.973 0.972 0.973 0.977
3 Month Autocorrel. 0.810 0.931 0.931 0.941 0.943
6 Month Autocorrel. 0.741 0.887 0.888 0.891 0.915
1 Year Autocorrel. 0.704 0.834 0.845 0.839 0.864

(b) Nominal Yields (05/2001–03/2018)

Maturity 1 3 5 7 10

Mean 3.12 3.79 4.39 4.86 5.31
Std. Dev. (changes) 0.34 0.42 0.41 0.39 0.39
1 Month Autocorrel. 0.990 0.987 0.987 0.988 0.986
3 Month Autocorrel. 0.959 0.958 0.959 0.958 0.951
6 Month Autocorrel. 0.901 0.906 0.914 0.917 0.911
1 Year Autocorrel. 0.822 0.822 0.835 0.840 0.824
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Table 2: Fit Statistics. This table shows the RMSE and the MAD of the estimated yields,
both real and nominal. Data is in basis points.

(a) Real rates (01/1985–03/2018)

Real

1 Year 3 Year 5 Year 7 Year 10 Year
Real RMSE 49.80 19.57 22.20 27.04 24.44
Real MAD 30.86 12.75 11.07 14.87 17.77

(b) Nominal rates (05/2001-03/2018)

Nominal

3M 6M 1 Year 3 Year 5 Year 7 Year 10 Year
Nominal RMSE 8.35 3.35 17.21 6.32 4.83 2.52 10.00
Nominal MAD 5.51 2.10 10.30 4.43 3.32 1.80 7.07

Table 3: Liquidity of the 1-year real rate. This table presents the results of the
regression BEIt = α + β1Et(πt) + β2BaSt + εt for the period of 01/2005-03/2018, where
BEIt is the end-of-month 1-year BEI, Et(πt) is the end-of-month average of the survey of
professional forecasters for the 1-year inflation rate, BaSt is the end-of-month daily half-
quoted spread divided by the midpoint price (in percentages) that serves as a proxy for the
1-year real rate.

α Std.Error Et(π) Std.Error BaSt Std.Error R2

-0.068 0.098 1.17 0.037 -21.04 54.76 0.84

Table 4: Seasonality bias. This table shows the results of regressing the end-of-month
1-year real rate and the fitted 1-year real rate on the seasonal adjustment factor for the
period of 01/2008–03/2018.

(a) Dependent variable: 1-year real rate

constant t-stat seasonality t-stat R2

-0.025 -0.30 -0.55 -3.19 0.077

(b) Dependent variable: Fitted 1-year real rate

constant t-stat seasonality t-stat R2

-0.14 -1.68 -0.35 -1.97 0.031
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Figure 1: Time Series of Real Yields. This figure presents the time series of real yields
(adjusted for the effect of carry and seasonality) with maturities of one, three, five, seven,
and ten years used in the estimation of the model. Data is monthly (end-of-month) and
yields are in percent annualized.
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Figure 2: Time Series of Nominal Yields. This figure presents the time series of nominal
yields with maturities of one, three, five, seven, and ten years used in the estimation of the
model. Data is monthly (end-of-month) and yields are in percent annualized.
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Figure 3: Time Series of Break-Even Inflation. This figure presents the time series of
the break-even inflation (nominal minus real yield) with maturities of one, three, five, seven,
and ten used in the estimation of the model. Data is monthly (end-of-month) and yields are
in percent annualized.
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Figure 4: Issuance of indexed and non-indexed bonds. This figure plots yearly
issuance of indexed and nominal bonds. Data is in millions of NIS.
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Figure 5: Volume (in millions of NIS) of bonds. The figure plots the trading volume of
indexed and non-indexed bonds in the Israeli stock market.

38



Figure 6: Bid-Ask Spreads. The figure plots the quoted spread divided by the midpoint
price (in percentages) in the nominal and inflation-indexed bonds.
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Figure 7: Number of Series. This figure plots the number of series of Indexed and
non-indexed bonds.
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Figure 11: World Inflation. The figure plots the annual CPI inflation for selected coun-
tries.
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